A Geometric Approach to Integrability Conditions for Riccati Equations
نویسندگان
چکیده
Several instances of integrable Riccati equations are analyzed from the geometric perspective of the theory of Lie systems. This provides us a unifying viewpoint for previous approaches.
منابع مشابه
ar X iv : 0 90 2 . 11 35 v 1 [ m at h - ph ] 6 F eb 2 00 9 Lie systems and integrability conditions of differential equations and some of its applications
The geometric theory of Lie systems is used to establish integrability conditions for several systems of differential equations, in particular some Riccati equations and Ermakov systems. Many different integrability criteria in the literature will be analysed from this new perspective, and some applications in physics will be given.
متن کاملRelationships between Darboux Integrability and Limit Cycles for a Class of Able Equations
We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.
متن کاملIntegrability of Riccati equations and the stationary KdV equations
Using the S.Lie’s infinitesimal approach we establish the connection between integrability of a one-parameter family of the Riccati equations and the stationary KdV hierarchy. In this paper we will suggest a method for integrating a one-parameter family of the Riccati equations ux + u 2 = f(x, λ) (1) based on their Lie symmetries. Here f(x, λ) = λ + λVn−1(x) + · · ·+ λV1(x) + V0(x) and λ is an ...
متن کاملOn the Integrability of Polynomial Fields in the Plane by Means of Picard-vessiot Theory
We study the integrability of polynomial vector fields using Galois theory of linear differential equations when the associated foliations is reduced to a Riccati type foliation. In particular we obtain integrability results for some families of quadratic vector fields, Liénard equations and equations related with special functions such as Hypergeometric and Heun ones. We also study the Poincar...
متن کاملAbout One Sweep Algorithm for Solving Linear-Quadratic Optimization Problem with Unseparated Two-Point Boundary Conditions
In the paper a linear-quadratic optimization problem (LCTOR) with unseparated two-point boundary conditions is considered. To solve this problem is proposed a new sweep algorithm which increases doubles the dimension of the original system. In contrast to the well-known methods, here it refuses to solve linear matrix and nonlinear Riccati equations, since the solution of such multi-point optimi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007